If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+48=300
We move all terms to the left:
7x^2+48-(300)=0
We add all the numbers together, and all the variables
7x^2-252=0
a = 7; b = 0; c = -252;
Δ = b2-4ac
Δ = 02-4·7·(-252)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*7}=\frac{-84}{14} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*7}=\frac{84}{14} =6 $
| 6*x+14=-6 | | 4/x+8=2x-6/x | | 5z-39=0 | | 16x+16+13x=180 | | 2x–7=-(x–5)+2x | | –6(5a+1)–6= | | 7x-25=4x+2 | | 60+87+8+x=180 | | 102+42+x=180 | | 7(12x+2)=84x-9 | | (6x+7)=19x-28 | | 62+48+x=180 | | 100=(8×x)+(8×9) | | 37+120+x=180 | | 20÷x=-4 | | 74+176+17x+8=360 | | 12(3+y)=5(2y-8) | | 4(2x+9)=-5-+38 | | (2.5t^2+4t+2)=0 | | (10x+44)=8x-23 | | 2(1.07)^x+1=10 | | (1/2)y-4=4 | | t=-16t^2+600t+4 | | 1/5w-12=18 | | 2(r–17)=–14 | | 103+87+84+128+150+x=720 | | x+30+115=180 | | (4x+6)=(7x–12) | | 61+39+x=180 | | 2-3x+6=6x+1 | | (4x+6)=(7x–12° | | 92=t-120 |